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Quantifying how urban landscape
heterogeneity affects land surface
temperature at multiple scales
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Abstract

Background: Landscape metrics have been widely applied to quantifying the relationship between land surface
temperature and urban spatial patterns and have received acceptable verification from landscape ecologists but
some studies have shown their inaccurate results. The objective of the study is to compare landscape metrics and
texture-based measures as alternative indices in measuring urban heterogeneity effects on LST at multiple scales.

Results: The statistical results showed that the correlation between urban landscape heterogeneity and LST increased as
the spatial extent (scale) of under-study landscapes increased. Overall, landscape metrics showed that the less fragmented,
the more complex, larger, and the higher number of patches, the lower LST. The most significant relationship was seen
between edge density (ED) and LST (r = − 0.47) at the sub-region scale. Texture measures showed a stronger relationship (R2

= 34.84% on average) with LST than landscape metrics (R2 = 15.33% on average) at all spatial scales, meaning that these
measures had a greater ability to describe landscape heterogeneity than the landscape metrics.

Conclusion: This study suggests alternative measures for overcoming landscape metrics shortcomings in estimating the
effects of landscape heterogeneity on LST variations and gives land managers and urban planners new insights into urban
design.
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Introduction
Land surface temperature (LST) of cities is warmer than sub-
urbs due to impervious surfaces and buildings (Li et al. 2012;
Tuttle et al. 2006). This phenomenon is due to the change of
natural habitats into cities, parking lots, roads, and other im-
pervious surfaces that considerably affect the local weather. A
combination of natural and anthropogenic covers in cities re-
sults in high heterogeneity. This heterogeneity affects the
ecological processes and biodiversity of urban areas, which ul-
timately change the urban ecosystems functioning (Cushman
and Huettmann, 2010). Numerous studies have estimated the
relationship between LST and urban landscape heterogeneity,
especially green spaces (Asgarian et al. 2015; Chen et al. 2014;

Connors et al. 2013; Li et al. 2012; Sahana et al., 2016; Zhang
et al. 2009; Zhang et al., 2013; Zheng et al. 2014). Nowadays,
it is well-known that increasing the area of green spaces re-
duces LST values (Essa et al. 2013; Mallick et al. 2013; Yue
et al. 2007; Zheng et al. 2014), but there are conflicting results
about how the spatial arrangement of these green spaces
affect LST. Some studies have claimed that higher fragmenta-
tion of green spaces positively affects LST (Bao et al. 2016; Li
et al. 2011; Maimaitiyiming et al. 2014), whereas other studies
have shown a negative effect (Kong et al. 2014; Masoudi and
Tan, 2019; Masoudi et al. 2019; Xie et al. 2013).
Estimating the relationship between LST and green spaces

patterns is an essential step for lowering LST in a city because
it is possible to reduce the city's temperature by creating new
green space patches. Therefore, there is an urgent need for
quantifying the effects of urban landscape heterogeneity on
LST correctly (Cadenasso et al. 2007). It is acknowledged that
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the relationship between landscape patterns and LST is scale-
dependent (Ma et al. 2016; Zhou et al. 2017). Therefore per-
forming multi-scale analysis is necessary to understand the re-
lationship between urban patterns and LST (Li et al. 2018; Lu
et al. 2020). Most studies have examined the relationship be-
tween landscape patterns and LST at a single scale and less
attention has been paid to the hierarchical structure and
multi-scales of the relationship (Wu et al. 2019). However,
some studies have examined the relationship between urban
patterns and LST at different scales. For example, at temporal
scales (different seasons), Ma et al. (2016) showed that LST
had a positive correlation with the impervious surface in sum-
mer daytime/nighttime and winter nighttime, but a negative
correlation in winter daytime. At the spatial scales, the rela-
tionship between LST and urban heterogeneity has been
measured at different pixel sizes (Lu et al. 2020; Xiao et al.
2007) and spatial extents (Myint et al. 2010).
Landscape metrics (McGarigal et al. 2002) and land use

maps have frequently been used to investigate the relation-
ship between urban heterogeneity and LST variations in the
last years. This kind of discrete model has shown a sufficient
capability to measure landscape structure patterns in many
studies (Li et al. 2011; Liu and Weng, 2008). However, it has
been shown that some metrics, although differently calcu-
lated, are highly correlated (Frazier and Kedron, 2017;
Kedron et al. 2018; Neel et al. 2004; Turner et al. 2001).
Other studies have shown that it is difficult to compare the
metrics on different scales (Wu et al. 2002). Therefore,
depending on the scale of the study, different results are ob-
tained in landscape ecology (Bolliger et al. 2007). The behav-
ior of the landscape metrics to the spatial and temporal
resolution of the existing data has also become an important
issue in landscape ecology studies in recent decades (Saura
and Castro, 2007; Šímová and Gdulová, 2012). Due to the
complexity of the landscape metrics, the choice of appropri-
ate metrics that reflects the characteristics of the landscape
has become a challenge (Liu et al. 2013).
As mentioned above, the accuracy of landscape met-

rics is considerably related to the accuracy of classified
maps. The classification of urban areas that are a mix-
ture of different covers is more complicated than other
land covers. Therefore, we need new methods to exam-
ine urban heterogeneity correctly. One of the suggested
alternative methods that can display and analyze urban
heterogeneity based on continuous data (e.g., NDVI) are
texture-based measures that directly use remote sensing
data as their inputs to capture landscape heterogeneity.
These measures quantify spatial aspects of landscapes
based on the gray-level co-occurrence matrix (GLCM)
(Haralick and Shanmugam, 1973). Each GLCM index
can highlight a particular property of texture, such as
smoothness or coarseness produced by the uniformity or
variability of image color or tone (Li and Narayanan,
2004; Park and Guldmann, 2020). Texture analysis

methods have been used in the different remote sensing-
based analyses, such as analysis of urban growth (Gluch,
2002), forest cover classification (Coburn and Roberts,
2004), habitat selection (Tuttle et al., 2006), and as a
predictor of spices richness (Hofmann et al., 2017;
Tuanmu and Jetz, 2015). Recent studies have paid atten-
tion to these indices and acknowledged their efficiency
in measuring landscape heterogeneity. For example, Park
and Guldmann (2020) compared the GLCM indices’
ability as continuous metrics and landscape metrics as
discrete metrics in estimating spatial patterns of tree
canopy at the landscape level. They showed that there
was a strong relationship between landscape characteris-
tics resulted from GLCM indices and discrete models
(landscape metrics).
As far as we are aware, no study has applied GLCM

indices in estimating the LST relationship with urban
landscape heterogeneity at multiple scales. Given the
above background, this study aims to compare landscape
metrics and alternative measures (i.e., texture-based
measures) in determining the effects of urban heterogen-
eity on LST. In the present study, we first retrieve land
surface temperature and land cover maps of Tehran City
in the year 2017 using Landsat images. Next, we esti-
mate the effects of urban composition and configuration
on LST values using landscape metrics and texture-
based measures at multiple scales and compare the
ability of these metrics in quantifying the relationship
between LST and urban structure elements like build-
ings and green spaces.

Methods
Study area
Tehran has experienced the fastest population growth
among the other cities in Iran, Tehran, with an area of
750 km2, is a metropolis of 10 million inhabitants and
locating on the southern side of the Alborz (a mountain
range in northern Iran) (Sodoudi et al., 2014) (Fig. 1).
This city divides into 22 areas and each area has its mu-
nicipal administration that tries to provide adequate ser-
vices to citizens. These 22 areas are different in size,
amount of green spaces, paved surface, and buildings;
hence, there are significant variations in LST tempera-
tures. The annual mean temperature changes between
15 °C and 18 °C, and given the parts of different heights,
there is a 3 °C difference in other districts’ temperatures.

Spatial data
We used Landsat image in the year 2017 as initial data
for deriving LST and land cover maps. Landsat 8 TIRS
sensor has two TIR bands (band 10 and 11), a spatial
resolution of 30 m, and a 12-bit radiometric resolution.
To compare landscape metrics and texture measures in
measuring LST changes, we applied the maximum
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likelihood algorithm to classify Landsat image as the in-
put image for calculating landscape metrics. The study
area was classified into five classes, including green
spaces (trees, parks, and natural vegetation covers),
built-up areas, impervious surfaces (roads, parking areas,
and cement surfaces), bare soils (useless lands without
vegetation cover), and water (artificial lakes). The image
was acquired during the growing season and is freely
available at the Landsat archive at the United States
Geological Survey (USGS) (http://glovis.usgs.gov).

Calculation of LST
We used the split-window method for Landsat 8 TIRS
(Sahana et al. 2016) to retrieve Tehran LST maps (Eq. 1).

LST ¼ TB10 þ C1 TB10−TB11ð Þ
þ C2 TB10−TB11ð Þ2 þ C0 þ C3 þ C4Wð Þ
� 1−εð Þ þ C5 þ C6Wð Þ△ε ð1Þ

Elements of LST equations and their explanations are
presented in Table 1, split window constant-coefficient
values are included in Table 2, and thermal constant
values for TIR bands are presented in Table 3.

Based on the equation below, we converted TB10 and
TB11 to top atmospheric spectral radiance (Eq. 2);

TOA ¼ ML � DNþ AL ð2Þ

The brightness temperature (TB) for TB10 and
TB11bands calculated based on the following formula
(Eq. 3);

TB ¼ K2

ln
K 1

TOA
þ 1

� � ð3Þ

Landscape metrics
In this study, we applied landscape metrics to compare
texture-based indices in estimating the relationship be-
tween urban landscape patterns and LST. For this pur-
pose, eight landscape metrics including, number of
patches (NP), patch density (PD), percentage of landscape
(PLAND), edge density (ED), total edge (TE), perimeter-
area fractal dimension (PAFRAC), splitting index (SPLIT),
and landscape shape index (Ferreira et al., 2020.) were

Fig. 1 Study area location in Tehran Province and Iran
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calculated using Fragstats software (McGarigal et al. 2002)
at class and landscape levels (Table 4).
Note aij = area (m2) of patch, A = total landscape area

(m2), ni = number of class i patches in the landscape, eij
= total length (m) of edges of patch ij, including land-
scape boundary, c = area (m2) within patch ij separated
from its boundary by a user-specified buffer width (m),
gii = the number of adjacencies (contiguity) between
pixels of patch class i, max gii = maximum possible
number of adjacencies among pixels of patches of class
i, hij = distance (m) from patch ij to the nearest neigh-
boring patch of the same type (class), based on patch
edge-to-edge distance, computed from cell center to cell
center (McGarigal et al. 2002)

Vegetation indices
In the continuous framework, we need to use continu-
ous indices that reflect landscape patterns for measuring
landscape fragmentation. In this regard, we used the
normalized difference vegetation index (NDVI) as an al-
ternative indicator of landscape patterns. The normal-
ized difference vegetation index is useful for identifying
green vegetation biomass (Fan and Myint, 2014), and is
the most widely used index for many different applica-
tions, ranging from vegetation monitoring to urban

sprawl (Nolè et al. 2014). The equation for calculating
the NDVI index is as follows (Eq. 4).

NDVI ¼ RNIR−RRED

RNIR þ RRED
ð4Þ

Where Red and NIR stand for the spectral reflectance
measurements acquired in the red (visible. and near-
infrared regions, respectively.

Texture-based measures
We applied two types of texture measures to the NDVI
index as input images: first- and second-order measures
(Table 5). The first-order measures describe the fre-
quency distribution of pixels without regarding the pixel
of neighbors. The second-order measures are based on
the probability of observing a pair of values at two pixels
within a specific distance (Tuanmu and Jetz, 2015). We
used eight texture measures including, variance, mean,
contrast, dissimilarity, entropy, homogeneity, correlation,
and energy (Table 5) for quantifying urban landscape
heterogeneity.

Determining the relationship between LST and urban
green space
The relationship between spatial patterns of green space
in Tehran and surface temperature was determined at
multi-scales. To determine the relationship between LST
and landscape metrics, first, 100 random points were
created throughout Tehran City, and then the landscape
around each of these points was determined with a ra-
dius of 1 km. In the next step, the relationship between
the spatial patterns of the green space of these 100 land-
scapes with their mean LST was investigated. Also, the
relationship between green spaces and LST was deter-
mined at the scale of 22 districts (sub-region) of Tehran.
The relationship between LST and texture measures was
examined at three scales of pixels (pixel-based), the ra-
dius of 1 km around the random points, and 22 districts
of Tehran.
We used Pearson correlation, linear regression, and

stepwise multiple regression analysis to estimate the re-
lationship between LST maps and spatial patterns of
green spaces. We use the stepwise method, which starts
at the forward selection, but at each stage, the possibility
of deleting a predictor, as backward elimination, is

Table 1 Elements of LST equations and their explanations

Elements Explanation

TB Surface temperature

LST Land surface temperature

TB10 The brightness temperature of band 10

TB11 The brightness temperature of band 11

ε Mean band 10 and band 11

W The atmospheric water vapor content

Δε Difference in LSE

DN Digital number

TB The brightness temperature for both 10 and 11

TOA Atmospheric spectral radiance

Table 2 Split window constant-coefficient values

Constant Value

C0 − 0.268

C1 1.378

C2 0.183

C3 54.3

C4 − 2.238

C5 − 129.2

C6 16.4

Table 3 Thermal constant values for TIR bands

Constant Band 10 Band 11

K1 774.89 480.89

K2 1321.08 1201.14

Radiance multiplier (ML) 0.0003342 0.0003342

Radiance add (AL) 0.1 0.1
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considered (Chong and Jun, 2005). The probability value
to enter variables into the stepwise models was set at
0.05 and the probability to remove was set at 0.1. The
selection of measures in the multiple stepwise regression
test was based on the variance inflation factor (VIF), so
that we removed measures with VIF > 10 from the ana-
lysis to prevent multicollinearity.

Results
Land use map and spatial heterogeneity of green spaces
Figure 2 shows the land cover map of Tehran City classified
into five classes acquired from Landsat 8 data in the year
2017. According to Fig. 2, most of the green spaces patches
are located in the north and the west of Tehran and less
amount of this class is in the center and the south. Therefore,
based on visual interpretation, there is an aggregated pattern
of vegetation covers, mostly concentrated in the north of
Tehran City. Figure 3 shows the spatial heterogeneity of
green spaces in the 22 municipal districts based on landscape

metrics. In this figure, for each district, the spatial patterns of
green spaces are measured using landscape metrics, and the
arrangement of green space patches in the city of Tehran is
shown based on the areas under municipal management.
For example, the SPLIT metric (Fig. 3A) measures the

aggregation degree of patches. SPLIT equals 1 when the
landscape consists of a single patch and increases as the
focal patch type is increasingly reduced in area and sub-
divided into smaller patches. According to this index,
most municipal districts of Tehran have an aggregated
arrangement of green space patches. The PD metric
shows the patch density of green spaces. The maximum
PD is gained when every cell is a separate patch. This
metric (Fig. 3B) shows that two districts in the northern
parts of Tehran have the highest density of patches and
the western and central areas have the lowest density.
The LSI metric (Fig. 3C) measures the irregularities in
the shape of patches and increases as landscape shape
becomes more irregular. This index shows that in the

Table 4 Descriptions of the selected landscape metrics.

Category Metric Equation Range

Area and Edge

PLAND C1(TB10 − TB11) 0 ≤ PLAND ≤ 100

TE ∑eik TE ≥ 0, without limit.

ED
P

eik
A ð10000Þ 0 ≤ ED, no limit

Shape PAFRAC 2

½ð
P

ln pij− ln aij Þ�−½ð
P

ln pij Þð
P

ln aij Þ�

ð
P

ln p2ij Þ−ð
P

ln pijÞ
1 ≤ PAFRAC ≤ 2

Aggregation LSI 0:25
P

eikffiffi
A

p 1 ≤ LSI, no limit

SPLIT A2P
A2ij

1 ≤ SPLIT ≤ number of cells in the landscape area squared

NP ni NP ≥ 1, without limit

PD ni
A ð10000Þð100Þ PD > 0, constrained by cell size

Table 5 Texture metrics as measures of spatial landscape heterogeneity

Metric Value range Expected relationshipa Equation

First-order texture

Variance ≥ 0 H∼X PNg

i

PNg

j ði−μÞ2pði; jÞ
Mean ≥ 0 H∼X PNg

k kpx−yðkÞ
Second-order texture

Contrast ≥ 0 H∼X PNg

i

PNg

j ði− jÞ2pdði; jÞ
Dissimilarity ≥ 0 H∼X PNg

i

PNg

j pði; jÞji− jj
Entropy ≥ 0 H∼X −

PNg

i

PNg

j pði; jÞ log½pði; jÞ�
Homogeneity ≥ 0; ≤ 1 H∼−X PNg

i

PNg

j
1

1þði− jÞ2 pdði; jÞ
Correlation ≥ 0; ≤ 0 H∼−X PNg

i

PNg

j pdði; jÞ ði−μx Þð j−μyÞσxσy

Energy ≥ 0; ≤ 1 H∼−X PNg

i

PNg

j gig2

aH∼X, larger values indicate greater heterogeneity; H ∼ –X, lower values indicate greater heterogeneity.
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Fig. 2 Land cover map of the study area in 2017

Fig. 3 Spatial heterogeneity of green spaces in the 22 municipal districts based on landscape metrics. (A) SPLIT, (B) PD, (C) LSI, and (D) PLAND
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northern parts of Tehran, green spaces are irregular and
more complex.

Estimating the relationship between landscape metrics
and LST
Figure 4 shows the land surface temperature map of
Tehran city in the year 2017. The LST map shows that the
northern areas of Tehran, which have more green spaces
than other areas, have lower temperatures. The western
regions of the city, which include barren lands, show the
highest surface temperatures. Table 6 shows the results of
the regression analysis and the Pearson correlation coeffi-
cient between the landscape metrics and the LST map at
two scales. At the sub-region scale, the LST has the high-
est correlation with the patch density (PD) and edge dens-
ity of green patches (r = − 0.47), and approximately 22% of
the changes in surface temperature in Tehran are ex-
plained by these metrics (R2 = 22.3% and 22.7% respect-
ively). The lowest correlation is also seen between the LSI
metric and LST (r = − 0.24). The linear relationships
between landscape metrics and LST are not statistically
significant, as the values of R2 vary from 5.9 to 22.7%
(15.33% averaged). The last row (at sub-region scale)
shows the result of multiple stepwise regression tests. The
result of this test shows that only the ED metric has been
selected as the best subset of the landscape metrics, which
explains 22.7% of the changes in LST. At the 1000 m scale,
the statistical relationships between landscape metrics and
LST are weaker than the sub-region scale. The highest
correlation is seen between LST and the three metrics LSI,
NP, and PD (r = − 34). LST also has the lowest correlation
with the PAFRAC metric (r = − 0.03). The results of linear

regression also do not show a strong statistical relationship
between LST and landscape metrics, and on average these
metrics explain only 7.5% of LST changes within a radius
of 1 km from random points. Stepwise regression has also
chosen the PD metric as the most effective metric that can
only explain 7.11% of the LST changes.

Fig. 4 LST map of Tehran city in the year 2017

Table 6 Linear and multiple stepwise regression functions and
Pearson correlation (r) coefficients between landscape metrics
of green space and LST

Scale Equation r R2 P value

Sub-region LST = 41.44–0.14 PLAND − 0.42 17.9% 0.05

LST = 40.70–0.001 NP − 0.30 9.3% 0.16

LST = 42.30–0.16 PD − 0.47 22.3% 0.02

LST = 41.77–0.02 ED − 0.47 22.7% 0.02

LST = 57.24–12.10 PAFRAC − 0.16 14.6% 0.07

LST = 40.62–0.02 TE − 0.33 11.1% 0.01

LST = 41.13–0.03 LSI − 0.24 5.9% 0.27

LST = 39.67 + 0.042 SPLIT 0.33 11.5% 0.12

LST = 47.127–0.0317 ED – 22.7% 0.02

1000m LST = 45.95–0.06084 PLAND − 0.19 3.6% 0.04

LST = 46.69–0.03922 NP − 0.34 12% 0.00

LST = 46.72–0.1246 PD − 0.34 12.1% 0.00

LST = 46.23–0.000050 TE − 0.26 7.2% 0.00

LST= 46.25–0.01583 ED − 0.27 7.3% 0.00

LST = 47.43–0.2533 LSI − 0.34 11.9% 0.00

LST= 46.21–0.678 PAFRAC − 0.03 0.1% 0.70

LST = 45.46 + 0.000000 SPLIT 0.24 6.1% 0.00

LST = 46.227–0.0901 PD – 7.11% 0.08
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Estimating the relationship between texture measures
and LST
Figure 5 shows the texture metrics applied to the NDVI
index. The dissimilarity measure (Fig. 5A) indicates more dis-
similarity around green patches. The energy measure shows
the highest energy in barren lands (Fig. 5B), while these areas
have the highest entropy (Fig. 5C). The homogeneity meas-
ure shows the highest heterogeneity in the northern regions
of Tehran (Fig. 5B). According to this classification, the inter-
pretation of their results is similar for each group of mea-
sures. Table 7 presents the results of the statistical
relationship between LST and texture-based measures at
three scales. According to this table, some measures have a
high correlation with LST, and others have a weak correl-
ation. For example at the sub-region scale, the highest
positive correlation is seen between energy measure and LST
(r = 0.72). However, the lowest correlation is observed
between variance measure and LST (r = 0.02), which is not
statistically significant. Contrast and correlation measures
also have a weak correlation with LST (r = − 0.17 and 0.25,
respectively). The linear relationship between texture mea-
sures and LST also showed that the energy measure has the
strongest correlation with the LST as this measure could ex-
plain 52% of the LST changes in Tehran City. On average,

texture measures explained 34.84% of LST changes at the
sub-region scale. The last row (at sub-region scale) shows
the result of the multiple stepwise regression test. According
to this test, correlation, energy, and mean measures have
been selected as the best subset of texture measures to ex-
plain changes in LST, which can predict 86.08% of its
changes.
At the 1000 m scale, the statistical relationships be-

tween texture measures and LST are weaker than the
sub-region scale. At this scale, LST has the highest cor-
relation with the entropy (r = − 0.54) and the lowest cor-
relation with the contrast (r = − 0.008). The results of
linear regression also show that texture measures can
explain an average of 14.96% of LST changes. However,
multiple regression shows (the last row at 1000 m scale)
that the measures of correlation, dissimilarity, entropy,
and mean can explain 62.6% of LST changes. At the
pixel-based scale, the relationship between LST and tex-
ture measures is not as high as the previous scales. At
this scale, LST has the highest correlation with the mean
measure (r = − 0.29) and the results of linear regression
show that on average these measures can explain 2.4%
of LST changes. According to the results of stepwise re-
gression (the last row), the four measures of variance,

Fig. 5 Texture metrics applied to NDVI. A The dissimilarity of NDVI. B Energy of NDVI. C Entropy of NDVI. D Homogeneity of NDVI

Rahimi et al. Journal of Ecology and Environment           (2021) 45:22 Page 8 of 13



mean, entropy, and energy can explain 17.3% of the LST
changes.

Discussion
Effects of landscape composition and configuration on LST
On the whole, there was a weak relationship between
landscape metrics and LST in the present study, so that
ED metrics could explain 22.7% of LST changes at the
sub-region scale. However, by the reduction of the scale
of analysis to the landscapes with a radius of 1 km, this
relationship became weaker (R = 7.3%) and was not sat-
isfactory. This result suggests that larger scales are more
suitable for examining the relationship between metrics
and LST because at smaller scales there is less green
space in the landscape that cannot reduce the LST well
(Myint et al. 2010). In addition, tiny green patches are
usually merged into large patches in classified maps of

satellite images, and the elimination of these patches on
a small scale may be effective.
At the sub-region scale, our results that showed in-

creasing the area of green spaces resulted in decreasing
LST is consistent with other studies (Guo et al. 2019; Li
et al. 2012). Two metrics including the percentage of
landscape (PLAND), and the number of patches (NP) of
green space class were negatively correlated (r = − 0.42
and − 0.30, respectively) with LST. Chen et al. (2014)
found that PLAND explained about 56% of the mean
LST. Still, in the current study, PLAND demonstrated
17.9% of LST variations, implying that the configur-
ational aspects of landscape structure were more capable
to measure LST variations than compositional structure.
Masoudi and Tan (2019) and Masoudi et al. (2019)
found that area-related metrics (PLAND, LPI, and MPS)
were negatively correlated with LST for different

Table 7 The Linear and multiple stepwise regression statistics and Pearson correlation coefficient of texture measures with LST in
2017

Scale Equation r R2 P value

Sub-region LST = 43.01 − 0.04 contrast of NDVI − 0.17 3.2% 0.4

LST = 44.75 − 0.04 mean of NDVI − 0.67 44.9% 0.01

LST = 30.89 + 0.08 energy of NDVI 0.72 52.1% 0.00

LST = 50.45 − 0.04 entropy of NDVI − 0.70 49.5% 0.00

LST = 42.37 − 0.03 variance of NDVI − 0.02 0% 0.99

LST = 35.70 + 0.04 homogeneity of NDVI 0.69 48.1% 0.01

LST = 32.19 + 0.04 correlation of NDVI 0.25 6.6% 0.23

LST = 44.02 − 0.04 dissimilarity of NDVI − 0.48 23.1% 0.02

LST = 14.331 + 3.530 correlation + 4.02 energy
− 0.1744 mean

– 86.08% 0.00

1000m LST = 45.95 − 0.02556 contrast of NDVI − 0.08 0.7% 0.40

LST = 52.60 − 0.4834 mean of NDVI − 0.51 26.9% 0.00

LST = 43.75 + 15.00 energy of NDVI 0.45 20.7% 0.00

LST= 55.21 − 3.831 entropy of NDVI − 0.54 29.4% 0.00

LST = 45.74 − 0.01540 variance of NDVI 0.03 0.2% 0.68

LST = 39.67 + 12.55 homogeneity of NDVI 0.53 28.3% 0.00

LST = 44.40 + 4.502 correlation of NDVI 0.17 3.1% 0.00

LST = 48.08 − 1.151 dissimilarity of NDVI − 0.35 10.4% 0.00

LST = 59.69 + 10.91 correlation + 1.481 dissimilarity
− 3.940 entropy − 0.7064 mean

– 62.6% 0.00

Pixel-based LST = 45.74 + 0.000720 contrast of NDVI 0.006 0.00 0.83

LST = 48.94 − 0.2259 mean of NDVI − 0.29 9% 0.00

LST = 44.79 + 8.686 energy of NDVI 0.19 3.8% 0.00

LST = 48.91 − 1.256 entropy of NDVI − 0.18 3.3.% 0.00

LST = 45.72 + 0.001848 variance of NDVI 0.01 0% 0.68

LST = 44.11 + 3.437 homogeneity of NDVI 0.18 3.3% 0.00

LST = 45.57 + 0.7066 correlation of NDVI − 0.06 0.4% 0.10

LST = 46.05 − 0.1361 dissimilarity of NDVI − 0.07 0.6% 0.10

LST = 43.90 + 0.04853 variance − 0.4057 mean + 2.113 entropy + 15.16 energy – 17.3% 0.00
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understudy cities. Guo et al. (2019) observed a negative
correlation of mean patch size (MPS) and the largest
patch index (LPI) with LST that confirmed our results.
The most significant correlation was between edge

density (ED) and patch density (PD) of patches and LST
(r = − 0.47), suggesting fragmented and shape-
complicated green space patches reduce LST. In several
studies, higher LST has been associated with higher PD
of green spaces, which is concluded to be a more frag-
mented pattern (Fan et al. 2015; Li et al. 2012; Zhang
et al. 2009; Zhou et al. 2011). However, McGarigal et al.
(2002) frankly acknowledge that patch density (PD) has
limited interpretive value by itself because it conveys no
information about the sizes and configuration of patches,
and selecting the neighbor rule for calculating PD affects
the results. Jaeger (2000) also discussed the limitations
of this metric for evaluating habitat fragmentation and
concluded that PD behavior changes during the frag-
mentation process. Interpreting results based on the PD
metric does not always lead to an accurate conclusion.
Masoudi and Tan (2019) and Masoudi et al. (2019)
showed that PD was positively and AI negatively corre-
lated with LST for all study areas and concluded that
less fragmentation (lower PD) and higher aggregation re-
sulted in cooling effects of urban green spaces.
Positive impacts of aggregation have been reported in

several studies (Estoque et al. 2017; Li et al. 2012; Xie
et al. 2013; Zhang et al. 2009; Zheng et al. 2014; Zhibin
et al. 2015), whereas Li et al. (2012), Maimaitiyiming et al.
(2014) and Bao et al. (2016) showed negative impacts. For
the built-up class, a more fragmented and edge-
complicated pattern of unvegetated surfaces has been
shown to have a warmer LST than vegetated surfaces
(Zhou et al. 2011). Zhou et al. (2011) found a negative cor-
relation between LST and patch density of paved surfaces
and a positive correlation between LST and patch density
of buildings. They suggested that fragmented built-up
class (higher PD) led to higher LST. The earlier studies
have concluded their results based on the belief that
higher PD means higher fragmentation. Still, our research
shows that this statement is not always accurate because
the SPLIT (r = 0.33) metric showed that less-fragmented
and clustered vegetation cover in Tehran city resulted in
lower LST (Table 6). SPLIT metric approaches 1 when the
landscape; consists of a single patch and increases as the
focal patch type increasingly losses its area and is subdi-
vided into smaller patches (McGarigal et al. 2002). There-
fore, relationship between LST and aggregation metrics
like SPLIT showed that fragmented green space affects
LST adversely.
All shape complexity metrics (ED, TE, LSI, and PAFR

AC) were negatively correlated with LST, consistent with
many studies (Asgarian et al. 2015; Bao et al. 2016; Chen
et al. 2014; Estoque et al. 2017; Guo et al. 2019; Li et al.

2012; Zhou et al. 2011), suggesting the positive effects of
more complex shapes in reducing LST. Li et al. (2012)
concluded that green spaces configuration metrics af-
fected LST significantly, particularly for LSI and ED that
were negatively correlated. Guo et al. (2019) also showed
a positive effect of edge density (ED) on LST. However,
Kong et al. (2014), Masoudi et al. (2019), Xie et al.
(2013), and Masoudi and Tan (2019) indicated that
shape complexity metrics (ED, LSI), especially ED and
LSI of green spaces were positively correlated with LST
in all cities under study, implying that the more complex
shapes affected LST values negatively.
In the present study, landscape configuration was gen-

erally observed to have more significant effects on LST
than composition, similar results have been shown with
several studies (Chen et al. 2014; Guo et al. 2019; Zhang
et al. 2009). Although a weak statistical relationship was
observed between landscape metrics and LST, our re-
sults showed that less-fragmented (lower SPLIT), more
complicated in shape (higher ED and LSI), larger, and
the number of patches lead to lower LST. The less-
fragmented pattern of green spaces led to a decrease in
the land surface temperature, one reason is that with in-
creasing fragmentation, large patches became smaller
and the distance between them increases. Reducing the
size of the patches causes the green spaces to create less
shade and the temperature of the surrounding areas to
dominate the temperature inside the patches (Osborne
and Alvares-Sanches, 2019). Large patches also have a
lower temperature than small patches (especially in the
center) and edge effects are more effective on small
patches. The complexity of the patches also reduced the
LST, one possible reason is that the complicated patches
increased edge density might enhance energy flow to
surrounding areas, leading to decreased LST (Guo et al.
2019; Wu et al. 2021).

The relationship between texture measures and LST
Statistical analyses showed that the correlation between
texture measures and LST increased with increasing
scale. This result indicates that the relationship between
LST and urban patterns is strongly scale-dependent, but
most studies examine this relationship at a single scale.
Few studies have investigated the effects of landscape
patterns on LST at various scales. For example, Song
et al. (2014) found that as the pixel size increases, the
correlation between LST and urban patterns increases,
and they stated that two resolutions 660 m and 720 m
were the best spatial resolutions to measure LST-
landscape relationships. Some studies have reported the
highest correlations between NDVI and LST in cell sizes
210 to 240 (Lu et al. 2020) and claimed that the changes
in the correlation with the changes in cell size indicate
the existence of a threshold distance for the cooling
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effect of green spaces. Xiao et al. (2007) also found an
increase in correlation between built-up density and LST
when cell size increased from 30 m to 960 m. Myint
et al. (2010) found that the correlation between air
temperature and impervious surfaces declined after
reaching a window size of 210 m. The reason is that in
small scale, green spaces cannot reduce LST consider-
ably and sometimes we consider a small part of a large
green space patch in these scales. As the spatial area or
window size increases, there will be more green space,
and green space patches will be fully considered in the
analysis, which can significantly reduce the LST (Myint
et al. 2010).
Texture-based measures often have a high correlation with

each other and can be divided into two groups based on
measuring and displaying landscape heterogeneity: (1) mea-
sures that depict greater heterogeneity with higher values
(e.g., mean, variance, contrast, dissimilarity, and entropy) and
(2) measures that display greater heterogeneity with lower
values (e.g., homogeneity, correlation, and energy). Among
texture measures used in this study for estimating the rela-
tionship between LST and landscape heterogeneity at the
sub-region scale, the energy of NDVI showed the strongest
correlation with LST (R2 = 52.1%), which was a second-
order texture measure. The higher values of the energy
measure show greater heterogeneity (Tuanmu and Jetz,
2015). Therefore, the positive correlation between the energy
of NDVI and LST (r = 0.72) implies that LST values increase
when vegetation covers are fragmented and dispersed. This
result is consistent with landscape metrics, which indicated
clustered and homogeneous vegetation covers had lower
LST values than dispersed patterns.
In the present study, texture measures showed a stronger

relationship (R2 = 34.84% averaged) with LST than landscape
metrics (R2 = 15.33% averaged) at all scales, meaning that tex-
ture measures had a greater ability to show landscape hetero-
geneity than the landscape metrics examined in the study.
Also, a comparison of the results of multiple stepwise regres-
sion of landscape metrics and texture measures showed that
there was a significant difference between the ability of tex-
ture measures to explain changes of LST. Among the land-
scape metrics, only edge density (ED) was selected as the best
predictor of LST changes (R2 = 22.7%) at the sub-region scale.
However, three measures of mean, energy, and correlation
were able to predict more than 86% of LST changes. One
possible reason is that the accuracy of landscape metrics is
strongly dependent on the accuracy of classified maps (Li and
Wu, 2004; Shao and Wu, 2008) and the errors related to the
land use classification are inevitable and may lead to unreal
results (Shao and Wu, 2008). The uncertainties related to the
classification process of continuous variables into discrete
classes can also reduce the efficiency and accuracy of these
metrics (Dormann, 2007; Frazier and Kedron, 2017; Kedron
et al., 2018; Park and Guldmann, 2020). Therefore, the

uncertainty associated with classification can compromise the
reliability of landscape metrics derived from the thematic
maps (Cockx et al., 2014; Fan and Myint, 2014; Kedron et al.,
2018; Rocchini et al., 2013). Many other factors affect the ac-
curacy and applicability of landscape metrics, like data source
accuracy, scale effects, and ecological interpretation (Frazier
and Kedron, 2017; Liu et al., 2013). Texture measures have
been used in various studies and have shown acceptable abil-
ity in ecological studies (Hofmann et al. 2017; St-Louis et al.
2014; Tuanmu and Jetz, 2015; Wood et al. 2013).

Conclusion
In general, our results showed that (1) texture measures
can better describe the relationships between LST and
green space patterns than landscape metrics, and (2) as
the scale increased, the correlation between LST and
urban heterogeneity increased. The result was the same
for landscape metrics and texture measures. This result
indicates that to determine the effects of urban patterns
on LST, analyzes should be performed at several scales.
Most of the studies that have aimed to estimate the rela-
tionship between LST and landscape heterogeneity have
applied landscape metrics to achieve this goal. Still,
many scientists have criticized these metrics and the ac-
curacy of their results is often controversial.
In this study, some texture measures indicated an accept-

able capability to determine the relationship between land-
scape heterogeneity and land surface temperature. However,
others were not suitable for estimating this relationship and
showed a weak ability to explain changes in LST, especially
at small scales. Therefore, in applying these measures, it is
suggested to consider this issue. We also suggest applying
these continuous measures instead of using landscape met-
rics when the spatial arrangement of landscape elements is
very heterogeneous. Using these indices saves time and is
much more suitable for examining time series analysis than
landscape metrics. They provide visual interpretation and
can distinguish small changes in the landscape. We per-
formed the statistical analysis at three scales to compare the
performance of landscape metrics and texture measures in
estimating the effects of green spaces on LST. For each of
these scales, the mean values of LST were compared with
the mean values of texture measures and landscape metrics.
Our suggestion for future studies is to apply more scales with
different pixel and extent sizes.
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