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Abstract

Background: Ranavirus is an emerging infectious disease which has been linked to mass mortality events in
various amphibian species. In this study, we document the first mass mortality event of an adult population of
Dybowski’s brown frogs (Rana dybowskii), in 2017, within a mountain valley in South Korea.

Results: We confirmed the presence of ranavirus from all collected frogs (n = 22) via PCR and obtained the 500 bp
major capsid protein (MCP) sequence from 13 individuals. The identified MCP sequence highly resembled Frog
virus 3 (FV3) and was the same haplotype of a previously identified viral sequence collected from Huanren brown
frog (R. huanrenensis) tadpoles in South Korea. Human habitat alteration, by recent erosion control works, may be
partially responsible for this mass mortality event.

Conclusion: We document the first mass mortality event in a wild Korean population of R. dybowskii. We also
suggest, to determine if ranavirus infection is a threat to amphibians, government officials and researchers should
develop continuous, country-wide, ranavirus monitoring programs of Korean amphibian populations.
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Background
Emerging infectious diseases are one of the key factors
causing rapid global biodiversity declines in this century
(Fey et al. 2015). Amphibians are particularly vulnerable
to infectious diseases due to their permeable skin and
metamorphic life cycle (Daszak et al. 1999). Fungal in-
fections by Batrachochytrium dendrobatidis (Bd) and B.
salamandriborans, causing chytridiomycosis, have been
implicated as a primary cause of rapid amphibian popu-
lation declines (Daszak et al. 1999; Scheele et al. 2019).
In addition, ranavirus, a double-stranded DNA virus, has
also been identified as a major emerging infectious dis-
ease and is associated with global amphibian declines
(Green et al. 2002; Carey et al. 2003). In Northeast Asia,
across China, Japan, and Korea, ranavirus infections have

caused mortality in 17, native and invasive, amphibian
species (4 urodelan and 13 anuran species) as well as
amphibians in the pet trade (Zhang et al. 1996; Weng
et al. 2002; Kim et al. 2009; Une et al. 2009a; Kolby et al.
2014; Une et al. 2014; Duffus et al. 2015; Kwon et al.
2017; Park et al. 2017). Out of the 21 reported ranavirus
infection cases, 18 have been linked to mass mortality
events (Table 1). Amphibian ranavirus susceptibility and
mortality are often correlated with low environmental
quality, such as habitat destruction and pollution (Carey
et al. 1999; Gray et al. 2009; Warne et al. 2011). Add-
itionally, distinct ranavirus strains may have varying
virulence and infection capabilities (Miller et al. 2011).
Thus, it is imperative to maintain and update infection
cases, as well as develop country-level screening proto-
cols, to successfully conserve amphibians at national and
global scales (Gray et al. 2009; Miller et al. 2015; García-
Díaz et al. 2017).
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Within Korea, studies on amphibian infectious dis-
eases have focused on B. dendrobatidis, the fungal
agent causing chytridiomycosis (Yang et al. 2009;
O’hanlon et al. 2018). In contrast, studies of rana-
virus infections are limited to a handful of reported
mortality events between four anuran species includ-
ing Gold-spotted pond frog (Pelophylax chosenicus)
tadpoles (Kim et al. 2009), Huanren brown frog (R.
huanrenensis) tadpoles (Kwon et al. 2017), adult Bor-
eal digging frogs (Kaloula borealis), and Japanese
tree frog (Hyla japonica) tadpoles (Park et al. 2017).
To date, all reported ranavirus strains detected in
Korean amphibians share the major capsid protein
(MCP) DNA sequence, similar to frog virus 3 (FV3),
originally identified from Lithobates pipiens (formerly
R. pipiens; Granoff et al. 1965) and Atelognathus
patagonicus samples (Fox et al. 2006). To understand
the characteristics of ranavirus infections and spread
in Korea and across Northeast Asia, it is necessary
to determine which viral strains are involved in such
mortalities.
In this study, we described a mass mortality event,

which occurred in 2017, in a wild population of Dybow-
ski’s brown frogs (R. dybowskii) in South Korea. All sam-
pled R. dybowskii were PCR-positive for ranavirus.
Additionally, we determined the strain of ranavirus col-
lected from R. dybowskii samples. This is the first known
case of a ranavirus-associated mortality event of adult R.
dybowskii in South Korea.

Materials and methods
On March 16, 2017, we found 22 dead adult Dybowski’s
brown frogs (R. dybowskii) during a field survey at the
upper region of a stream in Moksang-dong, Gyeyang-gu,
Incheon, South Korea (37° 33′ 34.05″ N, 126° 42′
12.79″ E). We collected 22 less decayed dead frogs in in-
dividual bags, transported the specimens to the labora-
tory, and preserved them at −20 °C until future use. In
2014, the stream where the frogs were collected, was
heavily modified for erosion control purposes. While
collecting dead frog specimens in 2017, we documented
that the collection site stream was heavily modified and
was lined with stones and concrete along the banks and
bottom, and was planted with trees on either side (Fig. 1).
Some live adult R. dybowskii individuals were observed
within the stream where we collected the dead individuals;
however, we were unable to collect any live R. dybowskii
due to permitting. At this site, we did not observe any dis-
tinctive external symptoms or erratic behaviors, such as
loss of buoyancy that were described by previous study
(Miller et al. 2015), from individual live frogs.

Ranavirus detection
Prior to analysis, samples were slowly defrosted in 10 °C
water. Once thawed, we examined any external physical
abnormalities under a dissecting microscope (Sunny Op-
tical Technology, China). Liver tissues, which have often
been used for ranavirus detection (St-Amour and Les-
barrères 2007), were collected from each frog individual.

Table 1 List of amphibian ranavirus infection or mortality cases reported in Northeast Asia. Asterisks represent mass mortality event

Nation Host species Captivity References

China Rana grylio Captive Zhang et al.(1996)*, Zhang et al.(2001)*

Hoplobatrachus tigerinus Captive Weng et al. (2002)*, He et al. (2002)

Rana dybowskii Wild Xu et al. (2010)*, Zhu and Wang (2016)*

Andrias davidianus Captive Geng et al. (2010), Geng et al. (2011)*, Zhou et al. (2012)*,
Zhou et al. (2013)*, Chen et al. (2013)*, Meng et al. (2014)*

Wild Chen et al. (2013)*

Bombina orientalis Captive Kolby et al. (2014)*

Cynops orientalis Captive Kolby et al. (2014)*

Paramesotriton hongkongensis Captive Kolby et al. (2014)*

Rana nigromaculata Captive Mu et al. (2018)*, Yu et al. (2020)*

Japan Hynobius nebulosus Captive Une et al. (2009a)*

Rana catesbeiana Wild Une et al. (2009b)*

Dendrobates spp. Captive Une et al. (2014)*

Phyllobates terribilis Captive Une et al. (2014)*

Korea Pelophylax chosenicus Captive Kim et al. (2009)*

Rana huanrenensis Wild Kwon et al. (2017)*

Kaloula borealis Wild Park et al. (2017)

Hyla japonica Wild Park et al. (2017)
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We extracted whole genomic DNA from 3 to 5mg of
liver tissue using the Qiagen DNeasy® Blood & Tissue
Kit (Qiagen, Hilden, Germany). For ranavirus strain
identification, the partial sequence of major capsid pro-
tein gene (MCP) was amplified using the specific primer
pairs (MCP4 and MCP5; Mao et al. 1997). We ran poly-
merase chain reactions (PCR) following Mao et al.
(1997) with a negative control using nuclease-free water
and confirmed PCR products on 1% agarose gel by elec-
trophoresis (Mao et al. 1997; Kwon et al. 2017). PCR
was run on each sample at least twice to minimize viral
false-positive detection.
Finally, PCR products were purified using an Accu-

Prep® PCR Purification Kit (Bioneer, Daejeon, Korea)
and sequenced using the same primer set (Macrogen,
Seoul, Korea). Sequences were edited and assembled
using Geneious 9.1.8 (Biomatters Ltd., Auckland, New
Zealand), and aligned using ClustalW (Thompson et al.
2003) for sequence comparison. For genetic relationship
with other iridoviruses, we performed a custom nested
BLAST using Geneious 9.1.8 and Bayesian Inference (BI)
analysis with 18 ranavirus MCP genes, obtained from
GenBank. The TIMef model was selected as the best

Akaike information criterion (AIC) scored model after
testing 56 nucleotide substitution models in MOTELT-
EST v3.7 (Posada and Crandall 1998). We analyzed the
phylogenetic relationships among the iridoviruses by ap-
plying both maximum likelihood (ML) and Bayesian in-
ference (BI) methods in PAUP v4.0 (Swofford 2001) and
MrBayes v3.2.47 (Ronquist et al. 2012), respectively. For
ML analysis and phylogenetic branching, we applied
Bootstrap/Jackknife method, with 1000 bootstraps, and
used the tree-bisection-reconnection (TBR) method. The
BI analysis with Markov Chain Monte Carlo (MCMC)
method was executed using the MrBayes (v3.2.47) soft-
ware. With four random starting trees, we ran 1,000,000
generations, while sampling every 100 tree generations
and discarding the first 5% of the sampled generations
as burn-ins. Therefore, 500 of the 10,000 trees sampled
were discarded.

Results
We found abdominal inflammation and erythema on the
legs of seven collected frog specimens (Fig. 1). All 22
collected frogs were confirmed infected with ranavirus
by PCR. Out of 22 PCR products, we obtained 13 partial
MCP DNA sequences (> 500 bp) due to low sample
quality. The obtained MCP DNA sequences (505 bp)
were identical and had 100% sequence similarity to the
haplotype (accession number KY264205) collected from
a ranavirus-infected Huanren frog (R. huanrenensis;
Kwon et al. 2017). In addition, the MCP sequence
showed 99.8% similarity with ranavirus KRV-1
(HM133594) from South Korea, Rana catesbeiana virus
(AB474588) from Japan, and 99.6% similarity for FV3
(FJ459783) a soft-shelled turtle iridovirus (DQ335253;
Table 2). The Bayesian inference (BI) phylogenetic ana-
lysis revealed that our sequenced ranavirus grouped with
a FV3-like virus including Rana grylio virus (RGV), FV3,
and Bohle iridovirus. The nested BLAST analysis was
consistent with our phylogenetic results.

Discussion
Diagnosing the physical symptoms of ranavirus infection
was often difficult due to the decomposition status of
the collected frog samples. Nevertheless, we found ab-
dominal inflammation and erythema on the legs of seven
frog specimens. Considering that erythema and skin ul-
cerations on the legs and ventrum, in amphibians, are
known external characteristics of ranavirus infection
(Gray et al. 2009; Park et al. 2017), we suspected our
specimens might be infected with ranavirus.
Results of our molecular analyses corroborated our

suspicions, as all frog specimens were confirmed infected
with ranavirus. These results suggest that FV3-like rana-
virus infections may be correlated with mass mortality
events in populations of adult R. dybowskii. This fact is

Fig. 1 The mountain valley (a) where the mass mortality of Rana
dybowskii’s adults (b) occurred, associated with ranavirus-infection at
Gyeyang-gu, Incheon, South Korea. Yellow arrowheads indicate dead
frogs and in the insert, white arrowheads indicate red skins, a
possible symptom of ranavirus infection
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nothing new, as recent amphibian mass mortality events
have been correlated with ranavirus infections across
several studies (Weng et al. 2002; Une et al. 2009a;
Kwon et al. 2017; Yu et al. 2020). Within the pet trade,
ranavirus has been detected in a large number of am-
phibians, including cases in Hong Kong and Japan
(Kolby et al. 2014; Une et al. 2014). Ranavirus strains,
detected in the pet trade, were similar to the common
midwife toad virus (CMTV) and FV3-like viruses, like
the virus detected here. FV3-like viruses have been doc-
umented worldwide including Northeast Asia (Kim et al.
2009; Xu et al. 2010), Europe (de Matos et al. 2011),
North and South America (Granoff et al. 1965; Fox et al.
2006), and Australia (Hengstberger et al. 1993). To date,
at least 11 mass mortality events have been documented
in Northeast Asia and were caused by FV3-like viruses
(Zhang et al. 1996; Zhou et al. 2012). To this regard, dis-
tribution patterns of specific ranavirus strains across
Northeast Asia are still under investigation (Duffus et al.
2015). FV3-like viruses have also been found in other
taxa such as turtles (Chen et al. 1999) and fish (Ahne
et al. 1989), highlighting the importance of ranavirus
screening across taxa.

Although the majority of ranavirus-associated amphib-
ian mortalities have occurred in captivity (Table 1; Meng
et al. 2014; Mu et al. 2018), there have also been con-
firmed cases in wild populations. Wild ranavirus-
associated mortality events have occurred across Asia,
including the Heilongjiang, Jiangxi, and Henan provinces
in China (Xu et al. 2010; Chen et al. 2013; Zhu and
Wang 2016), the western part of Japan (Une et al.
2009b), and in Gangwon-do, Gyeongsangnam-do, and
Daejeon in South Korea (Kwon et al. 2017; Park et al.
2017). Various environmental factors are known to in-
crease ranavirus susceptibility and virulence in amphib-
ians and facilitate mortality (Brunner et al. 2015). In this
study, two environmental factors may have contributed
to the mortality of adult R. dybowskii. First, the discovery
site was heavily altered with concrete for erosion protec-
tion 3 years prior, causing water stagnation. Stagnant
water during early spring drought periods may contain
high concentrations of various ions and pollutants (Kang
et al. 2016), possibly increasing stress hormones and
making R. dybowskii individuals more susceptible to in-
fection (Gahl and Calhoun 2010; Leduc 2014). In a pre-
vious study, dead adult boreal digging frogs were
discovered in concrete walled, low circulation waterways
(Park et al. 2017), similar to the environment observed in
this study. Future studies should determine if surface alter-
ations may influence amphibian-ranavirus susceptibility.
Second, amphibian mortality due to ranavirus has

often been correlated with elevated stress hormone
levels. Distinct life-history stages, including metamor-
phosis and reproduction, may be periods where frogs
have elevated stress, thus increasing their susceptibility
to infection (Green et al. 2002; Duffus et al. 2008; Gray
et al. 2009). For example, ranavirus-linked mortality
events occurred during the metamorphosis stage of P.
chosenicus and during the breeding season of K. borealis
(Kim et al. 2009; Park et al. 2017). Rana dybowskii is an
explosive breeding species that communally spawns
(Yoo and Jang 2012), possibly resulting in elevated stress
hormones (Norris and Jones 2012). Thus, highlighting a
need to understand how amphibian life history patterns
influence viral susceptibility and virulence.

Conclusion
Here, we document the first mass mortality event of R.
dybowskii in the wild. All collected individuals were PCR
positive for ranavirus, possibly indicating that these indi-
viduals died due to viral infection. Elevated stress levels
by erosion control works and/or from natural life-
history stages may have contributed to ranavirus infec-
tion and mortality. To understand if ranavirus infection
is a threat to Korean amphibians there are three conser-
vation strategies, which should be implemented. First,
there is a need for continuous, country-wide, monitoring

Table 2 Results of custom BLAST using partial major capsid
protein (MCP) DNA sequence (500 bp) of the ranavirus from
Rana dybowskii in this study. The accession numbers of the
sequences used for custom BLAST analysis are shown in Fig. 2

Sequence (host species) Identical sites
(%)

Rana grylio iridovirus isolate AD177LH (Rana
huanrenensis)

100.0

Ranavirus KRV-1 (Pelophylax chosenicus) 99.8

Rana grylio iridovirus (Rana grylio) 99.8

Rana catesbeiana virus JP (Lithobates catesbeianus) 99.8

Rana grylio iridovirus isolate AD183OH (Rana
huanrenensis)

99.8

Soft-shelled turtle iridovirus (Pelodiscus sinensis) 99.6

Frog virus 3 (Rana pipiens) 99.6

Bohle iridovirus (Limnodynastes ornatus) 99.2

Tiger frog virus (Rana tigrina rugulosa) 98.6

Pike perch iridovirus (Stizostedion lucioperca) 98.4

Chinese giant salamander virus (Andrias davidianus) 98.4

Rana esculenta virus (Rana esculenta) 98.2

Epizootic hematopoietic necrosis virus (Perca fluviatilis) 97.6

European sheatfish virus (Silurus glanis) 96.8

Ranavirus maxima (Psetta maxima) 96.2

Cod iridovirus (Gadus morhua) 96.2

Ambystoma tigrinum stebbensi virus (Ambystoma
tigrinum stebbensi)

96.0

Short-finned eel ranavirus (Anguilla australis) 94.6
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of amphibian populations. Second, ranavirus screening
should be conducted across various taxa and not rele-
gated to just amphibians. Third, government officials or
researchers must identify which environmental factors
may increase amphibian susceptibility to ranavirus. By
implementing these three strategies, government officials
and researchers may be able to successfully protect am-
phibians from ranavirus infections in Korea and perhaps
globally.

Supplementary Information
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org/10.1186/s41610-020-00179-2.

Additional file 1 PCR detection of the MCP sequence of ranavirus from
the liver tissues of dead Rana dybowskii’s adults. The numbers on the
bands represent individual frogs. P, positive MCP sequence control of
ranavirus from Rana huarenensis tadpoles and N, negative control, which
used nuclease-free water instead of extracted DNA in PCR process.
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